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Abstract

Let F be a two-dimensional manifold in n-dimensional space, ai ,
let r(F) be its projection into the subspace of three of the variables in
which F has been expressed. We give an algorithm that computes the

normal curvature of r(.F) directly from the equations of F without
variable elimination. We also comment on applications in computer-

aided geometric design (CAGD).

1 Introduction

Many surface operations in CAGD*derive new surfaces from given ones sub-
ject to certain constraints. Examples include offset surfaces, where a distance
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constraint must be observed, and spherical blends. where a curvature and a

continuity constraint must be satisfied. While there exist intuitive descrip-

tions of the resulting surfaces that are easily grasped, a precise mathematical

representation of the surfaces appears difficult to obtain in practice.

Indeed, closed-form representations, are available in principle with the
help of elimination theory - e.g., [4, 5] - or using Gr5bner bases tech-

niques - e.g., [2, 3. 14]. In practice, however, closed forms are usually

unobtainable because the elimination problems that must be solved are well

beyond the capabilities of machines and algorithms available to date: see.

e.g., [161. In consequence. surface operations including offsets and blends

have been treated individually in the literature, and specific approximation (
methods for the resulting surfaces have been given that are not general.'-For

example. offset computations are addressed in [7, 10, 12, 13, 18, 19, 22. 25,

26], and many ingenious and useful techniques for analyzing and approximat-

ing offsets have been derived. But the methods proposed in those papers for

deriving and analyzing offsets do not apply unchanged to. say, the treatment

of other surfaces whose definition also involves distance constraints, such as

Voronoi surfaces [6, 11].

In [6, 8, 11. 15, 16] we have given a uniform method for deriving an exact

representation of offsets, blends, equal-distance surfaces. and so on. The

representation is a system F = 0 of nonlinear equations in n variables, where
n > 3. with the property that the surface of interest is the natural projection

of the solution set of the system into the subspace spanned by the first three

variables. Thus. the surface is conceptualized as the projection of a certain

2-surface in n-space. and, as discussed in [6, 15, 16], the auxiliary variables in

the system F = 0 have a concrete geometric meaning that can be exploited

for instance in engineering design applications.

In [14, 15], a uniform method for evaluating the intersection of such sur-

faces has been described. In this paper, we develop a uniform method for

determining the surface curvature at a given point. That is, we present an

algorithm for the following problem: A surface F is given as a system of m



nonlinear equations in n variables

f1 (x . . X) 0

f 2(x ... x) 0

f(X .. x) = 0

It is assumed that the solution set of the system is locally a smooth 2-manifold
in R n. and so we have ordinarily m = n - 2: however, as discussed in [16], in
certain situations m > n -2 is desirable. Let r(.F) be the natural projection

of F into the (x 1,x 2 , x3 )-subspace, p a point on F. and v a tangent direction

to F at the point p. Determine the normal curvature of 7r(-F) at T(p) in the

direction ir(v).

If the nonlinear equations fk are algebraic. our problem can be solved in

principle by eliminating x4 ... x, from the equation system, followed by the
well-known curvature computation in 3-space using the shape operator, see,

e.g., [21]. Such a solution would not be practical. however, for in CAGD

applications the elimination of the auxiliary variables x 4, .. X, usually can-

not be carried out in practice. Hence, an algorithm is needed that avoids

elimination altogether. Such an algorithm is given here.

2 An Example from Surface Blending

To illustrate how surfaces can be described as sets of nonlinear equations. we

derive a ruled surface K that arises in certain approaches to blending two

surfaces. e.g., [20, 23]. The approach can be conceptualized as follows: We

are given two surfaces (or patches of surfaces) f and g, on which two link

curves C, and C2 have been specified. Note that f and g are usually assumed

to be parametric, but this assumption is inessential and can be dropped. The

blending surface h should be tangent to f in the curve C1, and tangent to g

in the curve C2 . See Figure I for an illustration.

Now. the approach is to put the points of C1 into i-I currespondence

with the points of C2, and to connect corresponding points pi and p2 with a

straight line L. Thereupon. a plane P through L is considered that intersects

f and g in two curves. C1 and C., that are blended as curves by a curve Ch

:3
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Figure 1: Blending Surface and Link Curves

that depends on L and on the way in which P has been chosen. Note that

Ch can be obtained as a functional blend (201 or as a parametric curve 23.
See also Figure 2. The plane P can be suitably chosen, say by requiring that
it is normal to f at Pl, as illustrated in Figure :3. The approach effectively
reduces the three-dimensional surface-blending problem to a two-dimensional
curve-blending problem. for it can then be proved that the surface obtained
in this manner is a blending surface for f and g. Moreover, [2 1] proves that

curvature continuity of the curve blend C'h implies curvature continuitv of the
surface h with f, provided that the tangents to Ch and C, do not coincide at

//

Figure 2: Blending Curve Ch in te Plane P

4



Figure 3: The Plane P through the Line L

pl. That is, the planes P must not contain the tangents of the link curves.

A difficulty with this approach to constructing a blending surface is to
find a simple method for establishing the correspondence of points on the
link curves C, and C2. In [23], Pegna proposes the following idea: Design a
space curve CO, say as a Bezier curve, and let the link curves be its orthogonal
projection onto the two surfaces. That is. C, is the orthogonal projection of
C,) onto f. whereas C2 is the orthogonal projection of Co onto g. Then two
points Pi and p2 on C, and C2 correspond precisely when they are the image
of the same point po on Co. See also Figure 4.

The lines L under this point correspondence define a ruled surface 11'. and
we describe a representation of K as a system of nonlinear equations. This
is an example of the surfaces considered in this paper. and the derivation
illustrates our methodology for deriving complex surface representations by
devising systems of equations with auxiliary variables. Note that the method-
ology is akin to the equational programming paradigm in programming lan-
guages, e.g., [17], except that here the equations must be interpreted over a
field whereas in programming language research the equations are typically
understood over a free algebra.

We begin the surface derivation by assigning variable names to generic



Figure 4: Point Correspondence on C, and C2

point coordinates. Let

po (u0 , L'o, Wo) be a generic point on C,
p1 = (u,, cl, wi) the projection of po onto f,
P2 = ( 2 , v2 w2) the projection of po onto g, and let
q =(x,y,z) be a generic point on the line L

through P, and P2.

.\ssume further that the curve C) is given parametricaily with the coordinate
functions

Co : (H,(r), 112(r), 113(r))

The surfaces f and g may be given parametrically or implicitly. For the sake
of illustrating both cases, we will assume that f is given implicitly, as

f(x,y,Z) =0

and that q is given parametrically, by

9 : (g1 (s, t). g2(s.t), g3 (s. t)

It will then be clear how to modify the equations in case both surfaces are
parametric or both are implicit.
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Ve now compile the equations defining the system K by translating all

geometric constraints on the points into equations. For each constraint. we

obtain one or more equations as follows:

The point Po is on Co: uo = H,(r)
'o = H2(r)
,Wo )3

The point p, is on f: fJ(u, - wL) = 0

The point P.2 is on g: U2 Y 5. t

1", !,]2 -,S t
tV'2 -= Sdat- t I

The point q lies on the line L.
and L contains P, and p2: .r = Au1 -I" (I - )u 2

Y = \ v1 + 0i - .\)V2
y Au1 + (0 - A)v 2-=, - (I - ,\w 2

P, is the projection of po
onto f: (uo- 11, vo- C, , Wo - Ul1 ) (0.- j -  = 0

(uo - it 1, Co - I'l. wo - I'l)'( 0. -

(O 1 , VO - PI, W'O - it', )'(- , -!L.0)

p2 is the projection of po
onto g: (Ito - ?I,. L-0 - I,,. L'o - '") .( _ ,"J-,s ),:. , =

(Uo - I,, Co - 1". W() - ,i • ( L 2.., '2 - =)

So. the ruled surface K with points q = (x y, -ts been represented by 15

equations in the 16 variables

x, y, z, ulO , vO , zv.O, al, vl, wi~. u2, Uv .a?,, r,. ,t. A

For an example, see the appendix.

There is a redundancy in the equation system that has been introduced on

purpose. when expressing the constraint that p, is the orthogonal projection



onto the implicit surface f. Here

ti = (0, -t2 = ( a. , 0, I
awl at3 = (_- / '9 9 0)

are three tangent vectors to f at the point Pt, which is evident when the
inner product with the gradient vector

Of Of Of
= ' OV;' Owt

is computed. Clearly, there can be only two linearly independent vectors
among the tk, but since some of the partial derivatives could vanish at p,, we
cannot decide a-priori which ones are independent. Instead, it is convenient
to have an algebraic dependence in the system and adjust the algorithms
that work with the system accordingly. See also [16].

3 Curvature Computations

We assume given a point p = (Pt, p,) that satisfies the system F = 0 of
rn equations in n variables:

f.(x.,.....,,) = 0
f 2 (Xl . ,Xn) = 0

f,(xi,..x) = 0

Moreover, we assume that the hypersurfaces fk = 0 are smooth at p, and
that the Jacobian of the system.

( at ,).X2  azx.

2aL L2 ... I
J = X X1 2

8X! ')X2 or,
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has rank n - 2. so that the solution set defined by F = 0 is locally a two-

dimensional manifold.

Let 7r be the natural projection function from R ' to R3 that maps points
q = (x,. . x,) to points r(q) = (xI,x 2 , x 3 ). If F is the solution of the

system F = 0 in R ' and ir(.F) its projection into R 3 , then we will show

that the normal curvature of 7r(F) at 7r(p) is determined by a certain linear

combination of the second fundamental forms of the hypersurfaces fk, where

0 < k < m. Moreover, we will show how to compute this linear combination.
In consequence. we can determine at 7r(p) all curvature properties of 7(FT')

without the need to determine ir.YF) explicitly. The following lemma explains

how to determine the normal to 7r()') at the point 7r(p), in R 3 .

Lemma 1 Let nk be the normal vector to the hypersurface fk at p E R" ,

for I < k <_ m. Let ak be such that the last n - 3 components of
rn

no = E aknk = (a, b, c, O,.... 0)
k=1

are zero. Then ir(no) is normal to r(F) at ;r(p).

Proof If t = (t, t 2, t3, ... ) is tangent to F at p, then 7r(t) = (t, t 2, t3)

is tangent to r(F) at r(p). Since r(t), ir(no) = 0. no is normal to r(F) at

7r(p). E

Meusnier's theorem in differential geometry states that the second deriva-

tive of any curve, through a point p that lies on a smooth surface f in 3-space.

has a projection onto the surface normal that does not depend on the curve.

The theorem generalizes to higher dimensions. where it can be stated as
follows:

Lemma 2 (Meusnier) Let 3(t) be a curve on the hypersurface f in

R n through the point p = 3(0), and let v = O 3(O)/&t. Then

0920(o)
Lp(v) . v = -VN= at2 . n

where n is the normal to f at p, and N is the (unit) normal vector field of f.

Note that Lp(v) is the shape operator. Therefore, we can define the

normal curvature of the hypersurface f at p in the tangent direction v as

v= LP(v) - v

9



where v has unit length. We now develop the main theorem.

Consider a curve 3(t) on the 2-surface F in R n that contains p, ana

assume that
3(0) = p
a (o )86() ___-_t - v

Then the curve lies on every hypersurface fk, for I < k < m. and v is tangent
to F and each fk.

The curve 3 projects to

7r( = 3 t) (t),4 2(t). 33(t))

We choose numbers ak such that

m

no E Z. a nk = (a, b.c. 0..... 0)
k=1

where the nk are normals to fk at p, and a 2 + b2 + c2 = 1. That is, the
projected normal 7r(no) has unit length. We will abbreviate ,, with 3 and
,23, with 3. With L(pk) the shape operator .f fk at p, we obtain

Zr-I ak(Lk) (V ) = cak(3(O).n,)

= Zl(3}(O) • aknk)

= 3(0) (Z Lc~nk) (I)
= () (a.b.c0, .... 0)

= (/3,(0). 2(0), /33(0)) -r(no)

So. if the curve 3(t) has been parameterized such that the vector

7r(-') = ((o), 32(o), 3(o))

has unit length, then expression (1) is the normal curvature of 7r(.F) at 7r(p)
in the direction 7r(v). We summarize this fact as follows:

Theorem 3 Let p be a poin, on the 2-surface F in R ' , where F is the
intersection of m smooth hypersurfaces fk, and assume that F is smooth at
p. Let v = (vl,..., u,) be a tangent vector to F- at p, with v 2 + V ± = V2

I0



and let there be numbers at such that no = =knk, where i no) has unit
length and its last n - 3 components are zero. If L( k ) is the shape operator

of the hypersurface fk at p. then

rPC= Z E L~ v
k=1

is the normal curvature of -(.') at 7r(p) in the direction -,,v).

In consequence. the following algorithm computes the normal cu-"ature

of the projected surface ir(F):

1. Adjust the length of the tangent vector v such that its projection -, v)

has unit length.

2. For each hypersurface fk compute the normal vector nk at p.

3. Find a unit normal to the projected surface by solving the linear system
entaied bv E~_L Qknk = (a, b. c, 0,.... 0), and then adjusting the ak such

that a 2 + b2 + C1.

4. For 1 < k < m, compute L, (v) - v.

.5. Compute K = (T-L, akL('(v)) " v.

It is straightforward to implement this method. A different algorithm for

computing the curvature of the projected surface can be given also. based on

finding a parametric curve 3(t) on F, see IS].

Note that the computation of L(')(v) v can be based on the following

observation.

Lemma 4 Let g = 0 be a hypersurface, and let N = V'g be the normal

vector field of g at the point p. With H the Hessian matrix of g at p, if

v = (v, ..., v,.) is a tangent vector of g = 0 at p, then Lp(v) • v = -v T Hv

Proof

Lp(v) - v = -VN.v
= -VvVg.v

11



0/ ( oq
O - (x ...... ()V "  V

-- o ,o-- - (P) "'. o o-' - (P ..... P.,)!j, • V

ox, ()x2O,
72 t)2,q

O9X,Oxl) u.

= -vFIJv

3ecause of the bilinearitv of the form -vrHv. notice that we can rephrase

Uheorem .3 in a form better suited to computing the normal curvature at ,(p)
in different directions.

Corollary 5 Let p be a point on the 2-surface F in R ' , where F is the
irtersection of ra smooth hypersurfaces fk, and assume that F is smooth at p.

Let v ........ ,,) be a tangent vector to F at p, with t' + v. + t,,= 1, and

!,,t there be numbers ok- such that no = T 1 aknk satisfies the hypotheses

t)f Theorem 3. \Vith nk. = V'fk and Ilk the Hessian of the hypersurface fk at
,. let

Trr

Hl Len

N -vFH,)v

;s the normal curvature of -.( F) at -(p) in the direction wlv).

4 Normal Curvature of a Parametric Sur-
face

\We illustrate our results bY deriving a formula for the normal direction and for
the normal curvature of parametric surfaces. in the direction of the isopara-
metric lines. Another example is given in tie appendix.

12



\We consider a ,ararnetric surface

X = hl(s, t)
= t2(s, t)

h3(s, t)

as the projection. into x, y, z )-space. of the 2-surface in 5-dimensional (x, q, z. s. t
space obtained by intersecting the three hypersurfaces

f : x - hl(s,t)

fh y - h2(st) 2)
f3z - Ua(s.t)

The coordinate functions hi. h2. h3 are assumed to be analytic and twice
differentiable. Fliis assumption holds in particular for the rational poiy-
nomial functions used in CAGD. We abbreviate the partial derivatives of
the coordinate functions by subscripts: for example. we write h2, instead of
h2!Os.

The normals to the fk are

7fi = (1,0,0, -hi,, -hlt)

Vf 2  = (0,1,0, -h2,, -h2,) (3)
Vf 3  = (0,0, 1,-h3,,-h3,)

Applying Lemma 1. we must solve a linear system in order to obtain the
normai direction to the parametric surface:

alhl, + c2 h2, + 3 h3, 0 0

aclhlt+ 2h2t+a 3h3t 0

The system is solved by

01 = h2,h3t - h3,h2t

02 = h33 hl, - i ih3t (5)
a3 = hlh2t - h2,h1t

In consequence. the normal vector to the parametric surface is given by

(01,o 2 ,a) = (hl,, h2,,,h3,) x (hit, h2t, h3,)

13



Fo obtain the unit normal n,) in projection. we must adjust the et by dividing

hv the length of the cross product, i.e.,

no = i l, h2, h3,) x (ht,, h2,, h:3,)/m
rn = 1(h1, h2, h3,) x Ih1t. h2, ,h3t)1

Next. we compute the normal curvature in the tangent direction of the

isoparametric line t = const. The Hessians of the system (2) are the matrices

0 0 0 0 0
0 0 0 0 0

0, 0 0 /1,

103 00 0 0
0 0 0 0-t, 0

[-1, 0 O0 0 0 0

0 0 0 -h2, -h2,t
0 0 0 -/t2,t -l12,t

0 0 0 0 0
0 0 0 0 0

0 0 0 - h 3, -x /?3, t
0 0 0 -h 3 ,t -h13,t

Fhierefore. the matrix [10 is ziven by
0 0 0 0 O0

0 0 0 0 0
HO= 0 0 0 0 0 (6)

where

a = - (hi,,, h2qsjha,,) (hl,, h2,h3.,) x (hit, h2t, hat)/ mn
b = -(hl,t, h2,t, h3,t) •(hl,, h2,,h3,) x (hit, h2t,,h3t)/m
c = - (h Itt, h2,t, h3,t) •(hl,,2Uh,) x (hl,, h2t, h3,)/m

m = 11(h I., h2,, h3,) x (hit, h2t, h3t) I

14



Now the vector
v = h1,, h2,, h3, 1,0)

is tangent to the 2-surface defined by (2) and projects to the tangent of the
isoparametric line t :- const. \Vhen divided by n = !(h1,.1h2,.h3,)II, the

projected vector has unit length. In consequence. the curvature is given by

t=const = -V THov/l

= -a/n 2

Siiariv. the normal curvature in the direction of the isoparametric line
= -const is

/ " 7= onst -(V1/'7

5 Summary

We have presented a method for determining the local curvature of the pro-

jection. into 3-space. of a 2-surface in n-space. The method does not rely

on expensive elimination computations, and we have implemented it. Our

techniques are useful in situations in which complex surfaces cannot be rep-

resented in a simple closed form, or are easily approximated by parametric
surfaces, when the surfaces instead have been expressed using systems of

equations in more than three variables. Examples of such surfaces include
offset surfaces, Voronoi surfaces, fixed and variable-radius spherical blending

,urfaces. and auxiliary surfaces such as the ruled surface A' of Section 2 or

the trimming surfaces [Ill] used in the definition of the skeleton. Algorithms
such as the one presented here are part of an infrastructure of surface in-

terrogation methods that should make surface representations by systems of

equations a reasonable alternative allowing practical work with geometrically
constrained surfaces.
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Figure .5: The surfaces f and g, the curve C0, a generator of the ruled surface.

and corresponding points.

Appendix: Curvature of a Ruled Surface

We give an example of a ruled surface of the type described in Section 2 and
compute its curvature in the direction of the ruling. Note that the curvature
should then be zero.

Let f be a cylinder of radius 1 whose axis is parallel to the z-axis through
the point (-1.0,0). Let g be a cylinder of radius 3 whose axis is the y-
axis. \We assume that f is given implicitly and that g is given parametrically.
Furthermore. let Co be a circle in the plane z = 4 of radius 3/2 centered

at (-1/2.0. 4). Co is also given parametrically. We formulate the equations

of Section 2 that describe the ruled surface that passes through the two
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orthogonai projections of CI) onto f and q.

3(1 - ,-

IL'o --
3r

'0 
+-

tcr"

111 -I- 1)2 + " - 1 = 0

3( 1 - ,&

6 .s

S -- -l (1 -,\u

y Ac, -+ (I - ,2zq Aw ,tl -i - \)w'2

"2(wo -,lvui + 1)= 0

-2( uo - 1li )Vi +2('o - vi )(ui + I) 0

2(wo - iv)t' = 0

-12s(u,) - It2) + 6(1 - s2)(w0 - IV2) 0
I) - c'- 0

Note that there are 16 variables and 15 equations.

On the surface defined by the equations. we choose the point

p = (xy, Z. Uo, L'o, Wo, U, Ul, Wl, u2 , u2, w 2 , r,s. t, A)

6 3 12 V17- I I
= ( _-.0.2+ -,1,04.,004. ,0,.0, .)

2V17 / 17 1 ' \'17 4

The curve and surfaces are shown in two projections in Figure 5. The points

in the figure are the following projections of p:

q = (x,y,z)

P0 = (?L0 U0, WO)

P, = U,, wi )
P2 = (I 2 , v2 , w 2 )
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Note that q = Ap + I - \ ip2. For the point p in R 16. we construct the sum
of the Hessians. Trhe resulting matrix H, is as follows

0 00 0 0) 0 0 0 0000 0 0
0 (0 00 0 0 0 000 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
00 0 00 ) 0 0 0 0 0 -'20 0
000 0 0 0 0 0 0 0 t} 0
000 0 0 0 }0 0 00 -0, 0 {}
0 00 0 0 -, (1 0 ci 1 0 0 0 0 -,

0 } ) ) } 0 I ) 000 0 0 0 0
0 0 0 0 0 , 0 0 0 0 0 0 } 0 -,

0 0 0 0 0 ) 0 0 0 0 ( t 7
000 ( 00 0 0 0 0 00 0
000 (} 0 0 0 0 000 0 0 3
0 0 0 0 0 0 0 0 0 0 0 a9  0 0 0
0 0 0 - 2 0 - 3  0 0 0 (17 0 a 0 (10  0 0
0 0 0 ( 0 0 0 0 0 0 0 0 0 0 0
0 0 0 } 0 0 - O-aro 5 0 aj 0 0 0

where
a, = 0.2776737 a2 = 0.3038138
03 = 0.2372107 a4 = 0.4158092
a5 = 0.8316184 o = 0.5553474
(17 = 0.4770799 as = 0.564125S
(9 = 1.4232639 o0 = 1.7147960

At the point p. the tangent vector in 16-dimensional space is
3 12v 3 o -- 4..0.0,0 .0,0,0,0,00.0.-l)

and projects in 3-space to the vector

3 12

17 17
which is in the direction of the ruling. We compute

vHovT = 0

so the normal curvature of the projected surface, in the direction of the ruling,
is zero.
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